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We study the scaling limit of random fields which are the solutions of a non- 
linear partial differential equation known as the Burgers equation, under 
stochastic initial condition. These are assumed to be a Gaussian process with 
long-range dependence. We present some results on the rate of convergence to 
the normal law. 
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1. I N T R O D U C T I O N  

Burgers '  equat ion  is known to describe various physical  phenomena,  such 
as nonl inear  waves (see, for example,  refs. 3, 28, and  7), the dis t r ibut ion of 
self-gravitating mat te r  in the universe, ~1~ and other  types of flows. Some 
models  related to the one-dimensional  Burgers equat ion have also been 
worked  out  in economics.  ~8~ Rosenblat t  first considered the Burgers equa- 
t ion with r andom initial data.  ~2L221 Many  people  have recently investigated 
solut ions of  the Burgers equat ion depending on different types of  r andom 
initial condit ions.  In par t icular ,  Bulinskii and  Molchanov,  ~2) Girai t i s  
et aL, 161 and Albeverio et al. I1~ studied solutions of  the Burgers equat ion 
when the initial condi t ion  is either a Gauss ian  r a n d o m  field or  a shot-noise 
r andom field with weak or  s t rong dependence. Leonenko et  al. 113'14'16"17~ 

present  Gauss ian  and non-Gauss ian  limit dis t r ibut ions of  solut ions of  
ini t ial-valued problems  for the Burgers equat ion when the initial condi t ion  
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is .either a Gaussian homogeneous isotropic random field or a chi-square 
field with long-range dependence. Deriev and Leonenko ~4J considered the 
Gaussian limit field for a scaling limit of solutions of the Burgers equation 
under suitable non-Gaussian initial conditions with weak dependence. In 
the Gaussian model with nonintegrable oscillating correlations the limit 
law of solutions is non-Gaussian/25~ We also mention the results of 
Surgailis and Woyczynsky ~ on the Burgers equation with nonlocal shot 
noise data. Sinai ~23~ and Holden et al. ~9~ considered the nonhomogeneous 
Burgers equation submitted to initial random conditions, deriving some 
asymptotic properties of limit solutions when the forcing term displays 
some periodicity and Hermite expansions for the solutions. Sinai ~24) con- 
sidered the statistics of shocks of the solutions of the Burgers equation. 
Majda ~s~ present explicit inertial range renormalization theory in a model 
for turbulent diffusion with large Reynolds number and long-large correla- 
tions of the initial conditions. 

Many authors have analyzed processes and fields with long-range 
dependence (e.g., refs. 5, 27, and 10). Some results on the rate of con- 
vergence to the normal law for integral functionals of homogeneous 
isotropic Gaussian random fields under strong dependence were considered 
by Leonenko. I ~  

In this paper we present results on the rate of convergence to the 
normal law of the solutions of the Burgers equation with strongly dependent 
Gaussian initial condition. 

2. PRELIMINARIES 

We consider the one-dimensional Burgers equation: 

Ou Ou O2u 
O-t +u--=ltOx Ox'-' t > 0 ,  x ~ R  t (2.1) 

subject to the initial condition 

d 
u(O,x)=uo(x)=~v(x),  x e R '  

which describes the evolution of the velocity field u(t,x), (t,x)~ 
[0, or) x R ~. 

(2.2) 

Equation (2.1) is a simplified version of the Navier-Stokes equation 
with R = 1/p corresponding to the Reynolds number. 
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Despite its apparent simple form, the Burgers equation (2.1) encom- 
passes many of the important features of the fluid flow and has furthermore 
found many applications in other areas. 

A crucial property of (2.1) is that it can be linearized by the so-called 
Hopf-Cole transformation (see also refs. 28, 7, and 2) 

a 
u(t, x) = -2/1 ~ log z(t, x) 

This transformation reduces (2.1) to the linear diffusion equation 

9Z a2Z 

a t  = l~ a x  2 

subject to the initial condition 

t,(x)'~ 
z(0, x )=exp  - 2p J 

The solution to Eq.(2.1) in the class of potential fields u(t,x)= 
(O/Ox) v(t, x) is given by the explicit Hopf-Cole formula 

u(t, x ) = ~ [ ( x - y ) / t ]  g(t, x - y )  exp[ --v(y)/2p] dy= I(x, t) (2.3) 
~-o~ g(t, x - y )  exp[ -v(y)/2p] dy J(x, t) 

where v(x)= v(0, x) is the initial potential [see (2.2)] and 

g(t,x--y)=(4npt)-l/2exp[--lx--yl2/(4pt)],  x, yER 1, t > 0  

is the Gaussian (heat) kernel. 
Let now (s ,~, P) be a complete probability space. We assume that 

the initial potential v(x)=~(o~,x), coEQ, x e R  ~, is a random process 
satisfying the following condition: 

Condition A. Let ~(co, x) = ~(x), co e I2, x e R, be a real, measurable, 
mean-square differentiable stationary Gaussian process with El(x)=0, 
E~Z(x) = l, and correlation function 

B(x)=E~(O)~(x)=B([x])=L(Ixl) 0 < ~ < 1 ,  x ~ R  I 
I x l  = ' 
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where L(t), t>O, is a slowly varying function for large values of t and 
bounded on each finite interval, i.e., the function L: (0, oo)---, (0, oo) such 
that for all ;t > 0 

L(2t) 
lim~ ~ = 1 

When the initial potential is random we focus our attention on the 
statistical properties of the solution (2.3), in particular, its limiting distribu- 
tion as t tends to infinity. For various forms of v(x), the problem was con- 
sidered in, e.g., refs. 22, 2, 13, 6, 14, 4, 16, 17, 25, and 26. Here we consider 
the Gaussian case with long-range dependence, i.e., v(x)= ~(x), x e R ~, is a 
stationary Gaussian process whose covariance decays slowly as Ix[ ~ 
(or, equivalently, the spectral density is singular). 

Let u=u(t,x), ( t , x ) e [ 0 ,  o o ) x R  ~, be the solution of the Cauchy 
problem (2.1), (2.2) with the random initial condition satisfying Condi- 
tion A. The main result of this paper concerns the limiting behavior of the 
process u=u(t, av/tt), a e R  l, when t ~  oo. 

Let 

1 ( w2~ 
( '~ - 2 J '  w e R 

be the density function of the Gaussian random variable with parameters 
(0, I), 

q~(z)=I~ q~(w) dw (2.4) 

An application of the ideas and methods of Dobrushin and Major, ~5) 
Taqqu, (27) and Leonenko and Olenko el2) yields the following theorem 
proved in refs. 13 and 14. 

T h e o r e m  2.1. Let u(t,x), (t,x)e[O, oo)• be the solution of 
the Cauchy problem (2.1), (2.2) with random initial condition satisfying 
Condition A. 

Then the finite-dimensional distributions of the process 

t 1/2 + ~t/4 

2,(a)=Ll/Z(x~)u(t, ax/~t), aeR'  (2.5) 

converge weakly as t---, oo to the finite-dimensional distributions of the 
stationary Gaussian process X(a), a e R l, with EX(a)= 0 and a correlation 
function of the form 
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R(a, b) = EX(a) X(b) = (2~) - i  -=/_, wl w2~o(wl) ~o(w_,) 

Remark 2.1. 
Gaussian process 

919 

d w  I dw2 
x 

I[w~ - w,_ - ( a -  b)l(Ztx)ll2]l= 

0 < ~ < 1 ,  a , b ~ R  l (2.6) 

If there exists a spectral density f(2),  2 ~ R  |, of the 

fr 
o3 

~(x)= e'~-"Ef(121)] m r o d 2 ) ,  x e R '  

where W(-) is the complex Gaussian white noise and the function f(2)  is 
supposed to be decreasing for 121/>2o>0, then t~SJ the limiting Gaussian 
process X(a), a e R  ~, in Theorem2.1 can be represented in the following 
way: 

where 

1 2 eV'~ W(d2) 
X(a)=-7[F(o~+l )cos(o~rc /2) ] ' /2 f?oo  

(2.7) 

g(2) = exp(-p2- ')  121'=-'v2 L 2 ~ R  I 

Using a Tauberian theorem '~2~ under Condition A we have the 
following asymptotic representation: 

( ) 2= v/-~ F - i  f(2)=f(12l)~o'2~'-~L 2F 1 + ~  

2--*0+,  0 < ~ < 1  

Using (2.7), we have g(0)=0.  

3. M A I N  RESULT 

Introduce the uniform distance between distribution functions 

At=  sup P t l 2 , ( a ) < < . z t - ~ ( z )  , er2= R(a, a) (3.1) 
- -  o -~  , <_ -  < o3  k u  ) 

where X',(a), a ~ R l, is defined by (2.5), ~(z) is defined by (2.4), and R(a, b) 
is defined by (2.6). 
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The main result of  this paper  describes the rate of  convergence to the 
normal  law as t ~ oo. This result is presented in the next theorem. 

T h e o r e m  3.1.  Let u(t,x), ( t , x ) ~ [ 0 ,  o o ) •  ~, be the solution of 
the Cauchy problem (2.1), (2.2) with r andom initial condition satisfying 
Condit ion A for 0 < a < I/2. Then the following quanti ty exists: 

lim [t~/6/[L(v/-t) ] 1/3"] z~ t 

and is bounded by 

3 2/3 1/3 
SYI I)2 

d,  is defined by (3.1) and 

1 
v, = 1 + (2n)l/,  - 

v2=O2(21t)2-~/2{2K[et/'2u'-'--(l+4-~)e1/(41'"'Je-l/'41'2'+~-~-.a} 
/9 is an arbi trary fixed constant  such that /9  > 1, and 

f o : .  [~ dw 1 dw 2 
K =  _ . - ~  wiw2(p(wt)  (p(IV2) ]w I __11,912 a 

. . . . . . .  - _ Iwl __ w2l=J 

M =  - ~  . - ~  (p(Wl) ( p ( w 2 ) ] W l _ W 2 ] =  

Before proving Theorem 3.1, we mention some well-known results. 

L e m m a  3.1 (ref. 20, p. 28). Let X, Y be two arbi trary r andom 
variables. Then for any e > 0 

sup: I P { X + Y < ~ z } - ~ ( z ) l ~ < s u p =  I P { X ~ < z } - C , ( z ) I + ~ + P { I Y I > e }  

where cP(z) defined by (2.4). 

L e m m a  3.2 (ref. 19, L e m m a  1). Let X, U be two arbi trary r andom 
variables. Then for any e > 0 

sup IP{X<<.zU} - r  ~<sup IP{X~<z} - ~ ( z ) l  + P { I U -  II >e}  + e  
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Lemma 3.3. Let X, Y, U be any random variables and U >  0. Then 
for any e > 0 

sup I P { ( X +  Y ) / U < z }  - r  

~<sup [P{X~<z}  - q~(z)[ 

E 

+ P { I  rl  >e} + ~ + P { I U - 1 1  >e} +e 

Proof. Lemma 3.3 follows from Lemmas 3.1 and 3.2. 

L e m m a  3.4. Let W, T be two arbitrary random variables. Then for 
any e > 0  

P{IW+ TI>e} <<.P{IWI>e6} +P{ITI>e(1-6)  }, 0 < 6 < I  

Proof. Obvious. 

Let 

H,,(u)=(-1)" d" - - -  e - " 2 / ' ,  
e ~/9 dun, u e R  l, m = 0 , 1 , 2  .... 

be the Hermite polynomials with the leading coefficient equal to 1. As it is 
well known, they form a complete orthogonal system in the Hilbert space 
L2(R l, q~(u) du). 

I . e m m a  3.5. Let (~,1/) be a Gaussian vector with E~=Eq=O, 
E~ 2 = Er/z = 1, E~p 1 = p; then for all m >~ 0, q/> 0 

E H. , (~ )  Hq(rl) = 6,,qp"m! 

where 6,,,, is the usual Kronecker symbol. 

The statement of Lemma 3.5 is well known (see, for example, ref. 10, 
p. 55). 

Proof of Theorom 3.7. If G(u) is a real function such that 
EG(~(O)) < ~ in Lz(R l, q~(u) du) we have the following expansion: 

G(u)=  CkHk(u)/k!, Ck =- G(u) Hk(U)Cp(u)du, k = 0 , 1  .... (3.2) 
k = 0  - - ~  
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By Parseval's equality it follows that 

G2(u) ~o(u) du = C~/k! < oo (3.3) 
- - ~  k = 0  

In particular, from (3.2) the coefficients of Hermite's expansion of the 
function G(u) = exp(-u/21~), u e R l, are given by 

1 
C0 = exp (~1,_), C , = -  ~-~ exp (8/~_,) 

(3.4) 
1 ~ ( u+-u21~-)Hk(u)du, k = 2 , 3  .... Ck=(2n)I/~ ~_~ exp 211 J 

All this implies the following expansion in the Hilbert space L2(12): 

H~(~(y)) ~(Y)~ 
_ exp - -~---~ J = k = o  k! 

where the Ck are defined by (3.4). 
We consider the random variables 

qk(a,t)=f'_, ax/~t-Yt g(t, ax/~t-y) Hk(r , k = 0 , 1  .... 

In order to apply Lemma 3.3, we represent f(,(a)/a using (2.3), (3.5) as 

X,(a)/a= (X,+ Y,)/U, (3.6) 

where 

X t =e-l/~a"'-)A,Cjql(a, t) 

=e_I/ts ,.,A,C l ;' a ~ t -  y g(t,a ~ t - -  y) H,(r dy 
--t t 

Yt=e-l/(8/'2)At[k~2Ck 

f a ~ - - y  ~ _ y )  e_r ] + - -  g(t, a dy 
lyl>t t 

=e-I/(8/?')At[ W t q- Tt] 

U t =J(a ~t ,  t) e - 1/~8/''), A t = tl/2+~/4/[aLl/2(x/~t)] 

We note that Coqo(a, t) ~ O, t --+ 00. 
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From Lemma 3.5 we have that 

Erlk(a,t)qj(a,t)=J~Var~Ik(a,t), k>~l. j>~l (3.7) 

where 

Var t/k(a, t) = ~ ( t )  

= k '  fr f ,  a ~ - - y , a ~ - - y 2  
- t  - ,  t t 

x g(t, a ~ t - -  y,) g(t, a x / ~ -  y2) Bk(ly, --Y2[) dy, dy 2 

After the transformation 

W~ (a~ t - -y i )  2 i = 1 , 2  
2 4r ' 

by using the properties of slowly varying functions 
ref. 10, p. 56), we have as 0 < ~ <  1/2 and t---, oo 

where 

(see, for example, 

2 2/zk ! I~. 
wl w,_cp(w~) cp(w2) IPk(t) = (2/t)k~- }i +k~/2 ~,.,~A(~.,I;i= l.Z 

Lk((2/Zt) 1/2 [W 1 - -  W21) 

x Iw] -- w2l k~' dwl dw 2 

2gtk! Lk((21xt) m) 
=c](k. oO (2~)k=/2 tl+k~/2 [1 +0(1)]  

F A(a, t) [(2p--)'/2 \ ~ ]  , ~  \ ~ p j  j 

;~' ~ dw____ L dw___2 1 
c d k , ~ ) =  -~. - ~  WlW2~o(wl)~o(w2) iw]_., , ik~, 0 < ~ < ~  

In particular, as t ~ m, 

~,~(t) = Var q l('a, t) = (2/~)]-~/2 c~( 1, ~) L('v/~----~) [ 1 + o(1)], 
t I +~/2  

0 < ~ < 1  

We note that the random variable 

X,  = e-]/r C,  ~h(a, ql(a, t) 
t) = [Var rh(a. t) ] l/z 
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is a standard normal random variable for any t > 0 in view of Condition A, 
the expression for C~ [see (3.4)], and fact that H~(u)=u. 

So we have 

sup IP{ X,  ~< z}  - ,~(z)l = 0 (3 .8)  

From (3.7) we have that 

Var[A, W,e -ll~8t''-)] =ATe -ll~41''-I Var -~-(. rlk(a, t) 
k>~_ 

= A l e  -1/'4#''-) ~_. C~'varrh<(a,t) 
k=2k! 

Dividing the integrals in the expression of ~bk(t) into several parts and 
using elementary inequalities for the estimation of each part, it is easy to 
see that 

Var rlk(a, t) Var qAa, t) 
~< for r<<.k 

k! r! 

and thus for 0 < a < 1/2 

Var[A, W,e-i/~s~,-'l ] 

~<A' ~k ~(t) ~ - ---=---- e-)/(4t,-') C_~ 
' 2 k!  k = 2  

t I +~lZ 2l t L2(v/~) 

-o'-s_,(,,/"7) I,,,/777) t 

x l ff, w, w2~o(w,) ~(w2) 
ciE A(a,t); i= 1,2 

L2((2pt) 1/'- [wi - w2l) dw ' dw,] 
• L2(x~t)[wi--wzl 2~ 

xe_l/~4t, b ~. C~ 
k = 2  ~ - .  I 

L(x/~t) K 1 ~ C~ 
t=12 ' ( v i ~ l  ) ~i2 C7 ,=*_ 

(3.9) 
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where 

K,-- [ ~, w,wzcp(w])q~(w2) 
viE A ( a , t ) ;  i =  1.2 

L'-((2~t) '/2 Iw, -wd ] 
x L'-(~/7~ I~--v~--w212~-~) dw, d,,v~ 

= v m.~idw2 ] - '  

We note that 

[I v I v dwldw2 ] 
,lira v x ,  = -~. - ~  w, w2~o(w,/q,(w2) I ,T ,2  7,12~J 

c1(2, ~) 
c](l, ~) K (3.1o) 

and 

1 v c ~  

1 ~ ' ~  u 2 ~ C~} 1 
= [ el/(2'u21- (1 + 4~---~)el/(4~21] [ ~1~ e'/'4''-,]-tj (3.11) 

Applying Chebyshev's inequality, we obtain from (3.9), (3.1 1) for any 
e>0, 0<~< 1, that 

02 c L(.,/'t) 
P{IA, W,e-~/~8":~I >~6} ~<e-~(2,.)-"/2 z t-S~--2 K,, 

1 
0=7>1 (3.12) 
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Note that 

Var[ A, T,e-l/(81,'-) ] 

= A:e-I/(4,,2) f f  R a ~ t - - y ,  a x/~--Yz 
2\{lYil<~t,i=l,2 } t t 

• g(t, a x/~t-- yl) g(t, a ~ t - -  yz) 

{ l  } 
x E e x p  - ~ [~(Yl)+~(Y2)] dy] dy 2 

<~A:e'/(4"2)[f~..iCA,,,.t,;i=,.2+2fI,,.,r 

X IW l W_~I ~o(wl) rp(wz) dwl dw2 

{ [a  } K - '  exp - -  e 1/14'u2i 
"~ (2rt) '/z ~ + k,2/~/ J 

and for any e > 0, 0 < 6 < 1 (0 = 1/~) 

P{ IA, T,e-'/(8"") I > e( 1 - 6)}  

<~ exp{-[a/(21t)u2+(t/21~)'/2]2}ea(2rt) u z ._,/I 2 e ]/(4,,-', ( ~ 0  ) z (3.13) 

Using Lemma 3.4, we obtain from (3.12) and (3.13) that 

P{IY, I >e} ~< 1 I 02(2/2) -~/2 Lv/~ _ c2--~7~_ K, 

0 ~- +exp{--[a/(21t'l/Z+(t/21"t'l/2]2}A~;el/'4~"'(-~-~)] (2rt) 1/2 

(3.14) 

For any e>0 ,  0 < 6 < 1  (0 =  1/6) we get from (3.8), (3.14), (3.6), and 
Lemma 3.3 the following estimation for A,: 

+p{IU,-lt >~} (3.15) 
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where 

A, ~ r e "- 

(L(,/7)~ 
= o \  t=12 j 

as t --~ oo. 

We note that 

U,-l=e-ll '8"2'II '_,+s g(t, ax/~t-y)(e-e~ 

where 

= 2"~(t) + S2(t) + Z3(t) 

(3.16) 

shows that 

Var2"l(t)~< 2t  -~/2-2 L(x/~) (3.17) ( ! ) M,(~) t=/2 

FF lim M,(~) = ~p(wl) ~p(w2) . . . . . . .  [wl -w2[ ~ dwl dw2=M 

Var Z'2(t) <~ (2p) - ~ e - i/t4t,-'lM, (2ct) ~ c2 (3.1 8) 

{,[~ (,)"12} Var2"s(t)-..<-~exp - ~  ~ +  ~ 

x + , c3=const  >0  (3.19) 

f! 2"dt) = e-1/c8"21C1 -, g( t, a x/~t- y) ~(y) dy 

C t 
2"2(t)=e-las,,21 S TM ~ f  g(t, ax/~t-y)  nk(~(y))dy 

k~2 k! J-, 

Xs(t) = e -'/18''21 fl:'l >, g(t, a x / / t - y ) ( e  -r - e  l/t8~'-')) dy 

Estimating and analyzing the limiting behavior of the integrals below 
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Applying Lemma 3.4 and Chebyshev's inequality, we obtain that 

P { I U , -  11 >e} 

I j'O2M,(~) _L(v"~) 
<~e'- [ t =/2 +c4at;  ' c4 = const > 0 (3.20) 

Q =o (L(, /7))  \ t=p_ / (3.21) 

as l ---~ o,3. 
From (3.15) and (3.20) we have 

Z ~ , ~ / ~ ( 1 . . ~ _ ~ ) . . ~ I [  0 2 L ( v / ~ ) ( c . ~ K t . J I _ ~  ~ R t - I - c4Q, ]  
- (2lt)~/2 t~/2 \ - l t -  / + 

In order to minimize the right-hand side of the last inequality, set 

,>,,s,(§ ( 
e= t=/---------g~ 1 ~ (2,t/) -~/6 2 c 2 K , +  

Thus we derive the following inequality: 

,,z/3,, 1/3 ,=/2 1 L1/3(%//~) ..2/3. I/3 
"dl<~ t~/6 )'1 v2 + ' l  "2 q_ ' _ ( R I c s h _ c 6 Q , )  2 C(x/,) 

where c5 and c6 are some positive constants. 
From the last relationship and (3.10), (3.16), and (3.21), Theorem 3.1 

follows. 
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